Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds.

Identifieur interne : 001031 ( Main/Exploration ); précédent : 001030; suivant : 001032

Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds.

Auteurs : M. Tien ; T K Kirk ; C. Bull ; J A Fee

Source :

RBID : pubmed:3003081

Descripteurs français

English descriptors

Abstract

Catalysis of the H2O2-dependent oxidation of 3,4-dimethoxybenzyl (veratryl) alcohol by the hemoprotein ligninase isolated from wood-decaying fungus, Phanerochaete chrysosporium Burds, is characterized. The reaction yields veratraldehyde and exhibits a stoichiometry of one H2O2 consumed per aldehyde formed. Ping-pong steady-state kinetics are observed for H2O2 (KM = 29 microM) and veratryl alcohol (KM = 72 microM) at pH 3.5. The magnitude of the turnover number varies from 2 to 3 s-1 at this pH, depending on the preparation of the enzyme. Each preparation of enzyme consists of a mixture of active and inactive enzyme. Extensive steady-state kinetic studies of several different preparations of enzyme, suggest a mechanism in which H2O2 reacts with enzyme to form an intermediate that subsequently reacts with the alcohol to return the enzyme to the resting state. The pH dependence of the overall reaction indicates that an ionization occurs having an apparent pK alpha approximately 3.1. The activity is, thus, nearly zero at pH 5 and increases to a maximum near pH approximately 2. However, the enzyme is unstable at this low pH. Transient-state kinetic studies reveal that, upon reaction of ligninase with H2O2, spectral changes occur in the Soret region, which, by analogy to previous studies of horseradish peroxidase, are consistent with formation of Compounds I and II. The active form of the enzyme appears to react rapidly with H2O2; we observed a positive correlation between the turnover number of the enzyme preparation and the extent of a rapid reaction between H2O2 and ligninase to form Compound I. Free radical cations derived from veratryl alcohol do not appear to be released from the enzyme during catalysis; however, other substrates are known to be converted to cation radicals (Kersten, P., Tien, M., Kalyanaraman, B., and Kirk, T.K. (1985) J. Biol. Chem. 260, 2609-2612). Our results are generally consistent with a classical peroxidase mechanism for the action of ligninase on lignin-like substrates.

PubMed: 3003081


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds.</title>
<author>
<name sortKey="Tien, M" sort="Tien, M" uniqKey="Tien M" first="M" last="Tien">M. Tien</name>
</author>
<author>
<name sortKey="Kirk, T K" sort="Kirk, T K" uniqKey="Kirk T" first="T K" last="Kirk">T K Kirk</name>
</author>
<author>
<name sortKey="Bull, C" sort="Bull, C" uniqKey="Bull C" first="C" last="Bull">C. Bull</name>
</author>
<author>
<name sortKey="Fee, J A" sort="Fee, J A" uniqKey="Fee J" first="J A" last="Fee">J A Fee</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1986">1986</date>
<idno type="RBID">pubmed:3003081</idno>
<idno type="pmid">3003081</idno>
<idno type="wicri:Area/Main/Corpus">001042</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001042</idno>
<idno type="wicri:Area/Main/Curation">001042</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001042</idno>
<idno type="wicri:Area/Main/Exploration">001042</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds.</title>
<author>
<name sortKey="Tien, M" sort="Tien, M" uniqKey="Tien M" first="M" last="Tien">M. Tien</name>
</author>
<author>
<name sortKey="Kirk, T K" sort="Kirk, T K" uniqKey="Kirk T" first="T K" last="Kirk">T K Kirk</name>
</author>
<author>
<name sortKey="Bull, C" sort="Bull, C" uniqKey="Bull C" first="C" last="Bull">C. Bull</name>
</author>
<author>
<name sortKey="Fee, J A" sort="Fee, J A" uniqKey="Fee J" first="J A" last="Fee">J A Fee</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="1986" type="published">1986</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (enzymology)</term>
<term>Benzyl Alcohols (metabolism)</term>
<term>Benzyl Compounds (metabolism)</term>
<term>Electron Spin Resonance Spectroscopy (MeSH)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxygenases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcools benzyliques (métabolisme)</term>
<term>Basidiomycota (enzymologie)</term>
<term>Cinétique (MeSH)</term>
<term>Composés benzyliques (métabolisme)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Oxygénases (métabolisme)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Spectroscopie de résonance de spin électronique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Benzyl Alcohols</term>
<term>Benzyl Compounds</term>
<term>Hydrogen Peroxide</term>
<term>Oxygenases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcools benzyliques</term>
<term>Composés benzyliques</term>
<term>Oxygénases</term>
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electron Spin Resonance Spectroscopy</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Oxydoréduction</term>
<term>Spectroscopie de résonance de spin électronique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Catalysis of the H2O2-dependent oxidation of 3,4-dimethoxybenzyl (veratryl) alcohol by the hemoprotein ligninase isolated from wood-decaying fungus, Phanerochaete chrysosporium Burds, is characterized. The reaction yields veratraldehyde and exhibits a stoichiometry of one H2O2 consumed per aldehyde formed. Ping-pong steady-state kinetics are observed for H2O2 (KM = 29 microM) and veratryl alcohol (KM = 72 microM) at pH 3.5. The magnitude of the turnover number varies from 2 to 3 s-1 at this pH, depending on the preparation of the enzyme. Each preparation of enzyme consists of a mixture of active and inactive enzyme. Extensive steady-state kinetic studies of several different preparations of enzyme, suggest a mechanism in which H2O2 reacts with enzyme to form an intermediate that subsequently reacts with the alcohol to return the enzyme to the resting state. The pH dependence of the overall reaction indicates that an ionization occurs having an apparent pK alpha approximately 3.1. The activity is, thus, nearly zero at pH 5 and increases to a maximum near pH approximately 2. However, the enzyme is unstable at this low pH. Transient-state kinetic studies reveal that, upon reaction of ligninase with H2O2, spectral changes occur in the Soret region, which, by analogy to previous studies of horseradish peroxidase, are consistent with formation of Compounds I and II. The active form of the enzyme appears to react rapidly with H2O2; we observed a positive correlation between the turnover number of the enzyme preparation and the extent of a rapid reaction between H2O2 and ligninase to form Compound I. Free radical cations derived from veratryl alcohol do not appear to be released from the enzyme during catalysis; however, other substrates are known to be converted to cation radicals (Kersten, P., Tien, M., Kalyanaraman, B., and Kirk, T.K. (1985) J. Biol. Chem. 260, 2609-2612). Our results are generally consistent with a classical peroxidase mechanism for the action of ligninase on lignin-like substrates.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">3003081</PMID>
<DateCompleted>
<Year>1986</Year>
<Month>03</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>261</Volume>
<Issue>4</Issue>
<PubDate>
<Year>1986</Year>
<Month>Feb</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds.</ArticleTitle>
<Pagination>
<MedlinePgn>1687-93</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Catalysis of the H2O2-dependent oxidation of 3,4-dimethoxybenzyl (veratryl) alcohol by the hemoprotein ligninase isolated from wood-decaying fungus, Phanerochaete chrysosporium Burds, is characterized. The reaction yields veratraldehyde and exhibits a stoichiometry of one H2O2 consumed per aldehyde formed. Ping-pong steady-state kinetics are observed for H2O2 (KM = 29 microM) and veratryl alcohol (KM = 72 microM) at pH 3.5. The magnitude of the turnover number varies from 2 to 3 s-1 at this pH, depending on the preparation of the enzyme. Each preparation of enzyme consists of a mixture of active and inactive enzyme. Extensive steady-state kinetic studies of several different preparations of enzyme, suggest a mechanism in which H2O2 reacts with enzyme to form an intermediate that subsequently reacts with the alcohol to return the enzyme to the resting state. The pH dependence of the overall reaction indicates that an ionization occurs having an apparent pK alpha approximately 3.1. The activity is, thus, nearly zero at pH 5 and increases to a maximum near pH approximately 2. However, the enzyme is unstable at this low pH. Transient-state kinetic studies reveal that, upon reaction of ligninase with H2O2, spectral changes occur in the Soret region, which, by analogy to previous studies of horseradish peroxidase, are consistent with formation of Compounds I and II. The active form of the enzyme appears to react rapidly with H2O2; we observed a positive correlation between the turnover number of the enzyme preparation and the extent of a rapid reaction between H2O2 and ligninase to form Compound I. Free radical cations derived from veratryl alcohol do not appear to be released from the enzyme during catalysis; however, other substrates are known to be converted to cation radicals (Kersten, P., Tien, M., Kalyanaraman, B., and Kirk, T.K. (1985) J. Biol. Chem. 260, 2609-2612). Our results are generally consistent with a classical peroxidase mechanism for the action of ligninase on lignin-like substrates.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tien</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kirk</LastName>
<ForeName>T K</ForeName>
<Initials>TK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bull</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fee</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM 30974</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM 31519</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001592">Benzyl Alcohols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001593">Benzyl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.-</RegistryNumber>
<NameOfSubstance UI="D010105">Oxygenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.99.-</RegistryNumber>
<NameOfSubstance UI="C044391">ligninase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>MB4T4A711H</RegistryNumber>
<NameOfSubstance UI="C042197">veratryl alcohol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001592" MajorTopicYN="N">Benzyl Alcohols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001593" MajorTopicYN="N">Benzyl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004578" MajorTopicYN="N">Electron Spin Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010105" MajorTopicYN="N">Oxygenases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1986</Year>
<Month>2</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1986</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1986</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">3003081</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Bull, C" sort="Bull, C" uniqKey="Bull C" first="C" last="Bull">C. Bull</name>
<name sortKey="Fee, J A" sort="Fee, J A" uniqKey="Fee J" first="J A" last="Fee">J A Fee</name>
<name sortKey="Kirk, T K" sort="Kirk, T K" uniqKey="Kirk T" first="T K" last="Kirk">T K Kirk</name>
<name sortKey="Tien, M" sort="Tien, M" uniqKey="Tien M" first="M" last="Tien">M. Tien</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001031 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001031 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:3003081
   |texte=   Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:3003081" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020